ARGOS ON THE VARDAR:
THE FIRST CONTRIBUTION OF A
CERAMIC SURVEY

Keywords: Argos in Paeonia, the Vardar valley, ceramic surveys, Hellenistic foundations

Abstract: The following study seeks to present the results of an intensive ceramic survey on Vidingrad near Vodovrati, the presumed site of the ancient town of Argos in Paeonia. It is one of the first studies of this type carried out in the region of the Middle Vardar and we thought it was important to publish the results, although the study of the collected pottery is still in a very early phase. After a brief description of the method of fieldwork, the distribution of the overall surface record is discussed. It enabled us to establish the precise location and draw the limits of the ceramic site. In the second half of the paper, the distribution of certain classes of ceramic material is examined and an attempt is made to trace the history of the settlement, from its founding to its final demise. The maximum size of the settlement, the presence and the quantities of some of the analysed ceramic categories, alongside the known historical facts about Argos on the Vardar are also indicative of the socio-economic character of this town.

Introduction: Argos, the geo-historical and archaeological setting

A number of towns in the ancient Greek world carried the name of Argos. The Pauly-Wissowa encyclopedia of the ancient world lists nearly a dozen of towns called Argos. (Wissowa ed. 1896: 787-798) Thanks to its place in the genealogy of the first royal dynasty, the name quickly became popular in ancient Macedon. There was a town called Argos in Orestis, in the northwest of the early kingdom (Papazoglou, 1988). However, the written evidence from the later Hellenistic and Roman periods, indicates the presence of another town with this name, this time located further north, in the Middle Vardar Valley. Because this name is foreign to the region of the Vardar Valley, it has been suggested that Argos on the Vardar had been founded as a Macedonian colony after the conquest of this region by the Antigonids in the course of the 3rd century BC. (Papazoglou, 1988: 312) Indeed, both the last Argeads and the Antigonids had founded colonies in the peripheries of their domains. A large number of examples are known from the periphery of the ancient Macedonian kingdom: Olym-
pia in northern Epirus, Heraclea and Antigonea in Upper Macedonia and Paeonia, Alexandropolis in the Strymon Valley, Beroe, Cabyle and Philippopolis in Thrace. With the exception of Cabyle, the names of these towns are apparently derived from the names of the major dynastic figures of ancient Macedonia. The planting of colonies in the freshly conquered parts of the kingdom was a widely adopted strategy in the Hellenistic period, particularly well-attested in Asia Minor and the East under the Seleucids (Jones 1937; Cohen 1995). Finally, the colonizing activities of the Antigonids find an explicit testimony in the writings of Polybius and Livy (Cohen 1995: 99). The founding of a town called Argos on the Middle Vardar was thus a minor episode in a wave of colonization that affected much of the land conquered by the Macedonian dynasts and cannot be dismissed as a mere confusion of the historical sources.

The site identified with the ancient town of Argos on the Vardar is known as Vidingrad or Ramnište. It is located about 1 km to the north of the centre of the modern village of Vodovrat and about 3.5 km to the west of the Vardar Valley. (Map 1; Josifovska-Dragojević 1965: 117-136; Mikučić 1999, 1980: 211-227; in general see, Cohen 1995). The fortification consists of at least 3 or 4 rings of wall, clear indication of at least 3 or 4 rings of wall, clear indication of a planned Hellenistic foundation. The foundation of Argos on the Middle Vardar was thus a minor episode in a wave of colonization that affected much of the land conquered by the Macedonian dynasts and cannot be dismissed as a mere confusion of the historical sources. By contrast, the examples of Stobi or Heraclea Lyncestis, located on major crossroads and in fertile basins or river plains.

1 Antigonea and Antipatrea also belong to this group, although they were probably founded by Pyrrhus the Great and Cassander; (Cabanes 1976; for Thrace see Gerov 1980: 211-227; in general see, Cohen 1995).

2 Cf. the examples of Stobi or Heraclea Lyncestis, located on major crossroads and in fertile basins or river plains.

arranged concentrically and unrelated to each other. (Donev forthcoming) They enclose the upper sections of the hill in wide arches, from the east and north. Beyond the southern edge of the hill-top the ground falls sharply into the valley floor of the Glavjata and the wall follows the contour line along this section. The westernmost line, the one guarding the most vulnerable side of the settlement, is unusually protracted and drawn below the highest peak of the ridge. On the only published plan of the fortification, a conjectural wall is drawn further west, enclosing the small knoll that is the highest point of the ridge. (Mikulčić 1999: fig. 100) More field-research is needed if we are to get a better understanding of the fortifications of Vidingrad. Nevertheless, the general layout already signals a gradual, spontaneous expansion of the settlement core rather than a planned development. The initial observations on the building technique and the details of the fortification walls suggest that this fort does not stand apart from the other Iron Age hill-forts in the region of the Vardar Valley.

The intention of this study is not to challenge the identification of ancient Argos with Vidingrad near Vodovrati. Admittedly, this town is not included in the Late Roman itineraries and there is no precise geographic reference to its location. Nevertheless, the few extant written and epigraphic sources that mention the name of the town and its community provide us with unambiguous indicators of its location. Livy mentions the fields of the Argestai in the context of the wars between Rome and Macedon, apparently somewhere in the northern periphery of the kingdom. (Livy XXVII 33) In the Synecdemos of Hierocles there is a town called Argos in Macedonia Secunda, listed immediately after Stobi. (Hierocles 641, 3) The most decisive evidence comes from the epigraphic record. Of the three inscriptions commissioned by the local town council in the 3rd century AD, two have been discovered in the immediate vicinity of Vidingrad, whereas the third has been directly related to the nearby village of Vodovrati. (Josifovska-Dragojević 1965: 117-136, Papazoglou 1988: 312) Therefore, the identification of the ancient town of Argos with the ruins on Vidingrad rests on firm ground and there is little use in re-examining the evidence. In any event, the findings of the ceramic survey can add little to the debate about the location of Argos. However, they can throw additional light on a number of aspects of the settlement that are ultimately relevant to its foundation, character and inner evolution.

1 In fact the earlier researchers clearly mention that the earliest movable remains on Vidin Grad date to the Iron Age, but do not discuss the possible implications (Josifovska-Dragojević 1965; Mikulčić 1999: 154-155).
It is impossible to provide an exhaustive interpretation of the survey results on this occasion. The collected finds have received only a preliminary analysis and the chronology of the prevailing fabric groups still needs to be refined. Nevertheless, the distribution of the overall surface record is already indicative of the maximum size of the settlement and its general layout. In addition, the distribution of the chronologically more sensitive categories of ceramic finds, like tile, grey-ware, Black and Red Gloss pottery can give us a clue to the core and the possible size of the settlement during the various phases of its existence. Furthermore, the relative frequency of some of these categories will reflect the likely socio-economic status of the settlement that is the subject of this study.

The ceramic survey: the fieldwork method

Ceramic surveys of urban and para-urban sites have been conducted for over three decades in the Eastern Mediterranean and there is little room for apologetic elaborations of this method, its advantages and downsides (Snodgrass and Bintliff 1988: 57-71; Alcock 1991: 421-463; Vermeulen et al. eds. 2012) Nevertheless, a brief description of this particular survey is in order. This will allow the reader to evaluate the representativeness of the ceramic collections and the scope of the survey.

In contrast to the rural surveys carried out in the northern part of this micro-region, the results of which have been published elsewhere, (Donev 2013: 89-111) Vidingrad was characterized by a much denser ceramic carpet. This circumstance has been anticipated and it was confirmed during the first few visits of the site. One of the primary goals of the survey was to determine the extent and the exact micro-location of the ceramic site. But in order to determine its limits more objectively, it was necessary to extend the survey beyond the hypothetical confines of the ceramic site and include parts of its hinterland. Only against the background of the district off-site densities could we hope to arrive at a meaningful density threshold and distinguish between the zones of site and off-site density. (Bintliff 2000) Ideally, the problem should be tackled by imposing an integral grid over the entire site-area and expand the survey until the ceramic carpet thins out. However, we lacked the means and the sophisticated equipment necessary to carry out a survey of this sort. It was equally important to compare the density records from Vidingrad to the densities recorded in the rural surveys carried out in this and in other micro-regions. Because in rural surveys normally larger quantitative and field-walking units are used, it was decided to cover the hypothetical site-area in a similar manner, using irregular field blocks as basic quantitative units. This approach

vo ovaа prva фаза беа добиени значајни созна
нија за приближната големина на керамичкото покривање, неговата просечна густина и внатрешна структура, но единиците со големина од 3.5 декара беа преголеми за да се добие попречна слика за точните граници и местоположба на локалитетот. Освен тоа, овие единици површина се преголеми за да бидат искористени за собирање на површински материјал и утврдување на хоризонталната стратиграфија на локалитетот.

За оваа цел, во втората фаза од истражувањето, беа поставени 10 координатни мрежи кои опфакаа речиси една половина од површината на локалитетот. (Мапа 5) Во првите, една мрежа единица мереше 150 квадратни метри, нако површината на гранчиците единици варираше од 100 до 250 квадратни метри. Со исключок на поголемите фрагменти градежен материјал, целокупниот матерijал видлив на површината беше собран. На овој начин беше извршено и собирање и квантификација на движниот материјал, а воедно беше обезбе
дено и репрезентативно количество на наоди. Координатните мрежи не беа прошириени преку целата површина на локалитетот. Густо образнати парцели, како и парцели на кои беше евидентирано мало количество на материјал не беа вклучени во координатните мрежи. Во одредена мера, последнава одлука се покажа како погрешна, за што расправаме подолу. Сепак, во оваа фаза успеавме да покриеме около 4 хектара или речиси една третина од површината покривана со рекогносцирањето во првата фаза. Освен тоа беа собрани и около 10 000 фрагменти керамика, што е се
како репрезентативен дел од вкупното количество движен материјал на овој локалитет.

Дистрибуција на вкупното керамички покривање

По направените анализи на собраниот податоци беше јасно определено јадрото на оваа насељба. Речиси половина од наодите беа собрани од трансектите 22 до 29. (Мапа 6, види мапа 3 за нумерацијата на трансектите) На овие единици беше измерена густина од над 150 фрагменти на еден декар. Овие концентрации се и три пати по високи од концентрациите измерени на соседните парцели. Највисока густина од над 400 фрагменти на декар беше документирана на трансек
tot 23. На останатите блокови од оваа зона, густината на керамичките наоди се движеше од 150 до 200 фрагменти на декар. Слични концентрации беа евидентирани и на некои други трансекти –
ensured a direct comparability between the densities recorded within the limits of the settlement and in its hinterland. (Map 3)

The modern divisions of the terrain in agricultural parcels were used to this end. Most of these fields follow the local ground-configuration and, theoretically, they could correspond to the original units of deposition. The average parcel measures about 3 500 sq. meters. Each of these units was transected along the longitudinal axis by three to four surveyors, spaced between 8 and 10 meters apart. (Map 4) All material visible on the surface within tracts not wider than 3 meters (1.5 meters on both sides of the surveyor’s trajectories) was quantified and note was also taken of the presence or absence of other categories of surface material. In addition, the surveyors recorded the visibility conditions in each transect. These data allowed us to compensate for this factor in the final analysis. In total, 44 field blocks of roughly similar size were needed to cover the assumed site-area and the neighbouring fields to the west and north of the site.

The quantification of the surface ceramic finds by irregular field blocks represented only the first stage of the survey. It provided us with a general idea of the extent and the density of the ceramic carpet and it highlighted the zones of high and low artefact densities within the site-limits. It also produced density records that were comparable to the results of the rural surveys carried out over the past few years. But the 3 500 sq. meters-large field blocks offer a poor resolution for the purposes of mapping the site’s inner structure. More to the point, they are too large to be used as units of collection of surface material, especially in conditions of very high artefact densities. Because of this, they are an inadequate tool for recording the horizontal stratigraphy of the ceramic carpet. In order to achieve this goal, it was necessary to use a finer spatial unit and a more intensive collection technique.

In the second phase of the survey, a dozen of regular grids were laid out across different sections of the site. (Map 5) The size of the grid units normally varied between 100 and 250 sq. meters, although the average module measured 10 by 15 meters. All material visible on the surface was collected with the exception of larger fragments of tile, only sample fragments of which were gathered. The total collection strategy secured a fairly accurate record of the amount of ceramic fragments on the surface and, at the same time, it produced a highly representative sample of the ceramic carpet. Moreover, it was possible to merge the operations of counting and collecting ceramic shards (normally carried out separately) and save a great deal of time and energy, although at the cost of overburdening the museum depots and the pottery experts.

33, 44 and 13 - the cost of overburdening the museum depots and the pottery experts.

The modern divisions of the terrain in agricultural parcels were used to this end. Most of these fields follow the local ground-configuration and, theoretically, they could correspond to the original units of deposition. The average parcel measures about 3 500 sq. meters. Each of these units was transected along the longitudinal axis by three to four surveyors, spaced between 8 and 10 meters apart. (Map 4) All material visible on the surface within tracts not wider than 3 meters (1.5 meters on both sides of the surveyor’s trajectories) was quantified and note was also taken of the presence or absence of other categories of surface material. In addition, the surveyors recorded the visibility conditions in each transect. These data allowed us to compensate for this factor in the final analysis. In total, 44 field blocks of roughly similar size were needed to cover the assumed site-area and the neighbouring fields to the west and north of the site.

The quantification of the surface ceramic finds by irregular field blocks represented only the first stage of the survey. It provided us with a general idea of the extent and the density of the ceramic carpet and it highlighted the zones of high and low artefact densities within the site-limits. It also produced density records that were comparable to the results of the rural surveys carried out over the past few years. But the 3 500 sq. meters-large field blocks offer a poor resolution for the purposes of mapping the site’s inner structure. More to the point, they are too large to be used as units of collection of surface material, especially in conditions of very high artefact densities. Because of this, they are an inadequate tool for recording the horizontal stratigraphy of the ceramic carpet. In order to achieve this goal, it was necessary to use a finer spatial unit and a more intensive collection technique.

In the second phase of the survey, a dozen of regular grids were laid out across different sections of the site. (Map 5) The size of the grid units normally varied between 100 and 250 sq. meters, although the average module measured 10 by 15 meters. All material visible on the surface was collected with the exception of larger fragments of tile, only sample fragments of which were gathered. The total collection strategy secured a fairly accurate record of the amount of ceramic fragments on the surface and, at the same time, it produced a highly representative sample of the ceramic carpet. Moreover, it was possible to merge the operations of counting and collecting ceramic shards (normally carried out separately) and save a great deal of time and energy, although at the cost of overburdening the museum depots and the pottery experts.

33, 44 and 13 - the cost of overburdening the museum depots and the pottery experts.

The modern divisions of the terrain in agricultural parcels were used to this end. Most of these fields follow the local ground-configuration and, theoretically, they could correspond to the original units of deposition. The average parcel measures about 3 500 sq. meters. Each of these units was transected along the longitudinal axis by three to four surveyors, spaced between 8 and 10 meters apart. (Map 4) All material visible on the surface within tracts not wider than 3 meters (1.5 meters on both sides of the surveyor’s trajectories) was quantified and note was also taken of the presence or absence of other categories of surface material. In addition, the surveyors recorded the visibility conditions in each transect. These data allowed us to compensate for this factor in the final analysis. In total, 44 field blocks of roughly similar size were needed to cover the assumed site-area and the neighbouring fields to the west and north of the site.

The quantification of the surface ceramic finds by irregular field blocks represented only the first stage of the survey. It provided us with a general idea of the extent and the density of the ceramic carpet and it highlighted the zones of high and low artefact densities within the site-limits. It also produced density records that were comparable to the results of the rural surveys carried out over the past few years. But the 3 500 sq. meters-large field blocks offer a poor resolution for the purposes of mapping the site’s inner structure. More to the point, they are too large to be used as units of collection of surface material, especially in conditions of very high artefact densities. Because of this, they are an inadequate tool for recording the horizontal stratigraphy of the ceramic carpet. In order to achieve this goal, it was necessary to use a finer spatial unit and a more intensive collection technique.

In the second phase of the survey, a dozen of regular grids were laid out across different sections of the site. (Map 5) The size of the grid units normally varied between 100 and 250 sq. meters, although the average module measured 10 by 15 meters. All material visible on the surface was collected with the exception of larger fragments of tile, only sample fragments of which were gathered. The total collection strategy secured a fairly accurate record of the amount of ceramic fragments on the surface and, at the same time, it produced a highly representative sample of the ceramic carpet. Moreover, it was possible to merge the operations of counting and collecting ceramic shards (normally carried out separately) and save a great deal of time and energy, although at the cost of overburdening the museum depots and the pottery experts.
The grid survey was not extended over the entire site-area. There was no use in setting-up a regular grid over the thickly overgrown central sections of the fortified area. The western and eastern parts of the area included in the transect survey were also omitted from the total collections, because it became evident that the density of the ceramic cover was considerably diminished in these survey sectors. Despite the unfavourable conditions on certain sections, the coverage of the grid survey was satisfactory. It was possible to extend the total collections over an area of nearly 4 ha or about 60% of the fortified area and one third of the area covered by the transect survey. More significantly, the survey resulted in a massive collection of almost 10 000 ceramic fragments, a volume that guaranteed a representative sample of the total ceramic record on Vidingrad.

The distribution of the overall ceramic carpet

Both the raw density figures and those corrected for the visibility factor document plainly the core of the ceramic site. Nearly one half of the pottery recorded in the survey area was counted on field blocks 22 through 29. (Map 6, see Map 3 for the transect labels) They form a continuous cluster in the eastern half of the fortification, stretching over an area of 1.7 ha. With the exception of transect 27, these field blocks feature artefact densities higher than 150 fragments per 1000 sq. meters. On average, this is three times the artefact densities recorded on the neighbouring field blocks. By far the highest artefact density was documented on field block 23, on which over 400 shards per 1000 sq. meters have been counted. On the rest of the field blocks within this zone, the density of surface finds fluctuates between 150 and 200 shards per 1000 sq. meters. Comparable or slightly lower densities were encountered on field blocks 33 and 44, to the east of the site-core and outside the circuit wall and on field block 13, in the western half of the fortification. These field blocks are located within a radius of 150 meters from the supposed core of the site and the increased densities on these locations are hardly surprising. However, we did not expect to discover similar quantities of material on three transects located outside the assumed site-area, on the left bank of the Vidin Dol. The densities recorded on transects 38, 40 – 42 are equal or higher than those encountered near the core of the settlement, the on-site status of which was confirmed by the grid survey. In terms of sheer quantity, the transects on the left bank of the Vidin Dol must be assigned an on-site status. However, some elements in the local topography speak against the presence of a separate residential quarter in this part of the survey area. Although technically possible and attested in certain time periods, a set-

помала. Сметаме дека ова е резултат на начинот на кон бил поставени координатните мрежи. Како што напоменавме по горе, координатните мрежи бил поставени на делови од локалитетот каде бил документиран голем или барем пресечно количество движни наоди. Поради слабата видливост и малот број на наоди евидентирани на трансектите 12, 13 и 16 на западната, 31 и 34 на источната страна, оваа зона беше изоставена од координатните мрежи. Поради оваа недопустимост да ги допречизираме податоците за границите на локалитетот добиени во првата фаза на рекогносцирањето, а првиначните резултати создадоа привид дека локалитетот е помал од неговата вистинска големина. Ќе беше доволно да ги прошириме мрежите по целата површина на трансектите 5, 14 или 35, за да утврдиме дали количеството на наоди продолжува да опаѓа, како што сугерира рекогносцирањето по трансекти или останува на исто ниво како на периферната зона од локалитетот.

Во сите останати аспекти, резултатите од рекогносцирањето по мрежни единици и трансекти се поклопуваат. Најголемо количество на движен наоди – речиси две-третини од сите наоди се обрани при ова истражување - беше собрANO од мрежите 2 до 5. На половина од квадрантите од мрежите 2, 3 и 4 беа измерени над 50 фрагмента на 100 кв. метри. Две помали јадра се лесно забележливии: западно кое се протега врз најголем дел од мрежа 4 и северниот дел од мрежа 5 и источно, кое се протега преку мрежите 6, 3 и 2. Околу овие јадра се протега зона со просечна густина од 25 до 50 фрагменти на 100 квадрата.

Исто така се забележува и нагло опаѓање на густината на движените наоди кон периферијата на координатните мрежи. Сепак треба да се повтори дека оваа е последица на поставеноста на координатните мрежи. На јужниот крај од мрежа 5, како и на мрежите 1, 8 и 9, во западниот дел од локалитетот, густината на движен наоди никогаш не надминува 20 фрагменти на 100 квадрата. Опаѓањето на бројноста на наодите во источен правец, на мрежите 6, 7 и 10 е постепено. Всушност, по еден тесен појас кој се одликува со потпросечна густина на наоди, бројноста на наодите повторно се накачува во централните и северните делови од мрежа 10. На некои квадранти таа до сето и до 50 фрагменти на 100 квадрата, но оваа се осамени концентрации опкружени со зона на просечна густина на наоди. Дури на јужната и источната периферија на мрежа 10, бројноста на наодите се изразува со онаа измерена во западната половина на локалитетот.

Како што беше напоменато погоре, по се изгледа дека кон населената површина ќе треба да ја при-
tlement spreading on both sides of a steep valley is quite unusual for this geographic setting and for the time-period in which Vidingrad was occupied. About 30 meters to the north of grid 7, on the other side of the Vidin Dol the remains of an isolated rectangular tower were discovered. (Photo 1) Its walls are constructed of roughly cut stone, bonded with mortar and it could date anywhere between the Roman and the Ottoman period. Located on the valley floor, with no visual control over the surroundings, it certainly had the function of controlling the local traffic across and along the stream. If this tower dates to the Roman period, it also probably defended the northern approach to the settlement, marking the settlement periphery on this side. The left bank of the stream, even if occupied in earlier periods, was probably abandoned once the tower had been constructed. Finally, a mention should be made of a likely burial mound, situated on the upper portions of the left bank of the valley, not more than 30-40 meters from the northern edge of transect 39. (Photo 2) The presence of a necropolis on the taller and narrower bank of the Vidin Dol is not unparalleled, especially during the early phases of the settlement’s history. It is unlikely that the settlement spread into this direction in the period in which the mound necropolis was still in use. Nevertheless, it has to be admitted that none of these arguments pertains to the large quantity of surface finds of the settlement’s history. It is unlikely that the settlement spread into this direction in the period in which the mound necropolis was still in use. Nevertheless, it has to be admitted that none of these arguments pertains to the large quantity of surface finds on the left bank of the Vidin Dol. The high artefact densities must be related to residential activities, at least during certain periods of occupation at this site.

The rest of the fortified area is characterized by average artefact densities defined by the thresholds of 30 and 80 fragments per 1000 sq. meters. The transects that belong to this density zone encircle the core of the site. They too spread beyond the line of the eastern wall and to the north of Vidin Dol. Although the density of the ceramic carpet on these units is much lower in comparison to the central parts of the surveyed area, they clearly stand apart from the field blocks that occupy the western and eastern peripheries of the survey area. In fact, the difference in artefact densities between these two zones is multi-fold. Beyond the limits of transects 8, 9 and 10 on the west and transect 34 on the east, the artefact density declines sharply and it never exceeds the threshold of 10 fragments per 1000 sq. meters. We believe that this line marks the limits of the site’s built-up area. About 90% of all finds recorded in the survey were counted within the limits of the zone of high and average artefact density, coinciding approximately with the fortified area. The small quantities of finds recorded

4 In Sopot, to the north of Veles, the Iron Age mound necropolis and the contemporary settlement are positioned almost identically. (Donev 2015)

 клучиме и зоната со густина на наоди од 10 до 20 фрагменти на 100 квадрата. Иначе големината на локалитетот би морале да ја пропишеме на само 2-3 хектара, ако би се пробило дека мошнина на површината обиколена од одбрамбениот бедем. Уверени сме дека доколку рекогносцирањето по мрежни единиции беше ангажирано преку трансектите 1 до 6, или 35 до 37, ќе беше констатирано натамошно опаѓање на бројноста наодите. Доколку се обиделе да го проектираат бројот на керамички фрагменти на овие површини што би бил документирана доколку тие беа вклучени во рекогносцирањето по мрежни единици – според формулата дека рекогносцирањето по мрежни единици резултира со измерени два до три пати повисоки концентрации во однос на рекогносцирањето по трансекти (Bintilff 2000, 200-215) – густината на керамичкиот материјал не би го надминала пратот од 2-3 фрагмента на 100 хектара. Релативно гладано, ова се многу пониски концентрации од оние измерени на мрежи 8 и 9, каде просечната густина изнесуваше около 10 фрагмента на 100 хектара.

Во случајот на Видинград, еднакво е дека локалитетот не се поклопува во потполност со површината обиколена од одбрамбениот бедем. Дел од јадрото на локалитетот се протегал источно и можеби северно од одбрамбениот бедем, додека западната половина од тврдината била доста потретка населена. Во рамки на трансектите 10, 11 и 14, поставени веднаш до западниот бедем од населбата, (според планот на Милучик 1999: 100) беа открити диво раскопани гробници кои можеби потекнуваат од Римскиот период, што укажува дека населбата не се ширела во овој правец.

Според своите димензии населбата на Видинград не отстапувала од другите пред-римски населби со градски карактер во овој регион, Антigonеа, Сибера, Алкомена и др. Таа се протегала на површината од около 7-8 хектара, што соодветствува на население од около 1200 жители. Сепак во споредба со типичните рурални населби, со големина од 2-3 хектара, Видинград е очигледно населба од повисок ранг.

Хронолошкит развој на населбата врз основа на дистрибуцијата на некои категори керамика

Основна цел на истражувањето по мрежни единиции беше да се утврди хронологијата на населбата, како и евентуалната хоризонтална стра-

5 Со истражувањата изведени кон крајот на минатата година беше утврдено дека овој план многу отстапува од реалната ситуација на теренот, Донев, во подготовка.
on the western and eastern periphery of the surveyed terrain are in all likelihood traces of non-residential activities. Taking into account the area covered by transects with artefact densities that are close to or higher than the district average, the size of the ceramic site can be estimated at about 7-8 ha.

The hyper-intensive grid survey recorded a slightly smaller ceramic spread than that recorded by the transect survey. (Map 7). However, we are convinced that this is related to the focus of the grid survey. With the exception of the thickly overgrown transects 17-19, it covered most of the units with artefact densities higher than the average. The relatively small quantities of worn finds collected from transects 12, 13 and 16 on the western, and from transects 31 and 34, on the eastern end of the fortified area, dissuaded us from extending the grid survey over the entire zone of average artefact density. It has to be admitted that, from a methodological point of view, this decision was not very sound. It deprived us of the opportunity to determine the limits of the site less ambiguously, by demonstrating the contrast in artefact densities between the core and the periphery of the survey area. It would have sufficed to carry out regular grid collections on field blocks 5, 14 or 35 to see if the artefact density continues to decline towards the limits of the surveyed terrain. Therefore, it can be argued that the results of the regular grid survey are of a limited value. They merely demonstrate the considerable difference in quantity of surface finds on the core and periphery of the site. Not only do they add little to the insights provided by the transect survey, they actually offer a false impression that the site is smaller than it really is.

Regarding the on-site distribution of surface finds, the grid survey confirmed the results of the transect survey. The largest amount of pottery was collected from grids 2 through 5, in the central parts of the survey area. The total number of finds from these units amounts to almost two thirds of all shards collected during the grid survey. Over half of the units on grids 2, 3 and 4 have very high artefact densities or over 50 fragments per 100 sq. meters. Two major cores are visible: one on grid 4 and partly continuing into the northern part of grid 5 and, in the western half of grid 6, the one that stretches over the southern half of grid 3 and the northern half of grid 2. The artefact density declines gradually and in roughly concentric circles on the rest of the grid units. The two high-density cores are surrounded by grid units that belong to the density range of 25 to 50 fragments per 100 sq. meters. They include the rest of the area covered by grids 2, 3 and 4 and most of the surface on grid 5.
Towards the periphery of the gridded area the artefact density declines more steeply, but it should be repeated that, to some extent, this is an effect of the focus of the grid survey. On the southern end of grid 5 and on grids 1, 7, 8 and 9 in the western half of the survey area, the artefact density drops significantly and rarely exceeds the threshold of 20 fragments per 100 sq. meters. This trend is not repeated on the gridded areas in the eastern half of the site. Although they have lower average densities than the core areas, the decline is gentler on grids 6, 7 and 10 than in the western half of the gridded area. In fact, after a zone of low artefact density in its westernmost rows, the quantity of surface finds rises again above the survey average in the central and northern parts of grid 10. Here, we see a number of units with artefact densities higher than the threshold of 50 fragments per 100 sq. meters, surrounded by an equally extensive zone of average artefact density. Only in the eastern and southern parts of grid 10 does the number of surface finds diminish to the levels recorded on grids 8 and 9. High concentrations of finds limited to one or two grid units were also encountered on grid 7, on the northern edge of the grid survey.

It was already mentioned that the grid units with artefact densities lower than 20 fragments per 100 sq. meters also probably belong to the built-up area of this settlement. Otherwise we would have to conclude that the site was limited to an area of only about 2-3 hectares in the eastern half of the fortification. If the grid survey was extended over the peripheral, low density transects 1-6 or 35-37, the artefact densities on grids 1, 8 or 7 would have gained in prominence. In order to illustrate this point, we can try to extrapolate the hypothetical artefact density in the periphery of the survey area on the basis of the results of the transect survey. Normally, the artefact densities recorded by the intensive grid surveys are two to three times higher than the artefact densities recorded by the transect survey on the same units. (Bintliff 2000, 200-215) On grids 8, 9 or 10 the average artefact densities per grid are close to the threshold of 10 fragments per 100 sq. meters and, although these are considerably lower than the densities recorded in the central parts of this site, they would have still ranked much higher than the hypothetical densities on transects 1 – 5 or 35 – 37. Were these units included in the grid survey, the artefact density would have hardly exceeded the ceiling of 3 fragments per 100 sq. meters. It is almost certain that this low density zone falls outside the built-up area of the site, marking a zone of non-residential activities.

In the case of Vidingrad the ceramic spread only partly coincides with the fortified area. The core of the ceramic carpet was located near the eastern wall, on grids 4, 5 and 3, and the entire eastern third of the
The combined results of the transect and the grid surveys demonstrated that the upper western portion of the fortified area had been occupied more sparsely. In fact, it is possible that the field blocks along the problematic western wall (10, 11 and 14) did not belong to the residential area of the settlement during most of the period of its existence. This was certainly the case in the Middle to Late Roman period, when the area immediately to the west of the circuit wall was turned into a small necropolis. (Photo 3)

The ancient settlement on Vidingrad does not differ from the rest of the urban and proto-urban centers in this region in terms of its size. The ceramic spread that, we believe corresponds to the built-up area of this settlement, measures not more than 8 ha and, in this respect, Vidingrad joins the ranks of pre-Roman Antigonea, Styberra, Lychnidos or Alkomena. The ancient town at Vidingrad was not a large agglomeration, but it is clearly distinguished from the open rural settlements typical for this part of the Vardar Valley. They rarely cover more than 2 or 3 ha.

The general chronology of the settlement and the distribution of certain ceramic categories

The principle aim of the total collections by regular grid units was to clarify the overall chronology of the settlement and to document the horizontal stratigraphy within the limits of the site. The figures presented in the preceding paragraphs pertain to the total ceramic carpet on the surveyed site, generated over a period of over one millennium. They either reflect the most dominant period in the surface record or the aggregate remains of several subsequent and partly overlapping chronological phases. As an archaeological document their value is relatively limited. In order to disentangle the input of each of the phases represented in the surface archaeological record, it was necessary to systematically collect and study each category of finds.

Graph 1: distribution of the pottery by time-periods
Large amounts of surface finds from different sections of the site-area. The quantity of nearly 10,000 ceramic shards gathered from the central sections of the site guarantees that only the most transient periods in the local settlement history will pass undetected. However, the total survey by regular grid units only brings us one step closer to the desired goal. Surface pottery has a restricted chronological sensitivity. This circumstance becomes particularly problematic in cases in which the great majority of the pottery classes are the product of an ill-understood regional and local production. In the case of Vidingrad, local production is evidenced by the significant presence of over-fired fragments, amounting to about 10% of the total collections. Over 2/3rd of the pottery fragments collected can be dated only within wide chronological terms, stretching over at least two major historical periods or three to four centuries. (Graph 1) Approximately 25% of the total ceramic record on this site belongs to a fabric group that could date anywhere between the Iron Age and the Hellenistic period, and it is possible that its production continued into the Roman period. (Graph 2) The date-ranges that can be assigned to the other fabric groups, like the Grey Paionian ware or the majority of the tile fabrics are equally imprecise. Obviously this low chronological resolution does not provide a very clear insight into the local settlement dynamics and transformation.

To be sure, it was possible to observe certain variations regarding the solidity of the paste or the surface treatment, but they are very subtle and will require prolonged macroscopic studies combined with the study of pottery from stratified deposits.
form one compact cluster in the central part of grid 2 collected from a limited number of grid units. They of the finds that belong to these categories have been distribution is likely to emerge. However, the bulk excluded. In that case, a highly scattered pattern of than 1% of the total surface record, is actually an Iron possibility that this small group of finds, amounting to less Vardar Valley. (Mitrevski 1997) Therefore, the possi-

4) There are no examples with fully developed dec-
reduced decorative repertoire, consisting of notched更多的是由附近的文化因素和地方的埋葬因素。

Despite the highly conservative character of the predominant fabric groups, it was possible to determine the overall chronological span of the ancient settlement on Vidingrad. The earliest datable finds from the surface collections date to the Iron Age, probably to its late phase. (Map 8) These are hand-made fragments with polished surfaces and a simple and reduced decorative repertoire, consisting of notched or impressed motifs and, more rarely, fluting. (Photo 4) There are no examples with fully developed decorative patterns typical of the Iron Age pottery in the Vardar Valley. (Mitrevski 1997) Therefore, the possibility that this small group of finds, amounting to less than 1% of the total surface record, is actually an Iron Age recidivism dating to a later period should not be excluded. In that case, a highly scattered pattern of distribution is likely to emerge. However, the bulk of the finds that belong to these categories have been collected from a limited number of grid units. They form one compact cluster in the central part of grid 2

4 In the country's archaeological atlas (mistakenly?) a Bronze Age phase has been attributed to this site. We repeat that among the pottery collected during the grid survey there are no finds earlier than the Iron Age. Arheološka Karta na Republika Makedonija vol. 2, 63-64 (The Archaeological Atlas of the Republic of Macedonia, vol. 2, 63-64).
and smaller concentrations in the western half of grid 4 and grid 7. Only a few scattered finds were collected from the intervening stretch on grids 3 and 5 and none from the western half of the gridded area. However, they do reappear along the northern periphery of the site, on grids 6 and 7 and, in smaller quantities, along the eastern edge of grid 10. The heightened concentrations in the peripheral zones of the gridded area are not necessarily accidental. They indicate that the remains from the earliest phase of the settlement have been concealed in the central portions of the site by the material from the upper archaeological layers. Their re-emergence on the northern periphery of the site signals that the settlement was more extensive in this direction during the earliest phases of its existence.

The exact extent and structure of the Iron Age settlement cannot be determined because almost half of all collected finds can be dated only between the end of the Iron Age and the Late Hellenistic period. (Graph 1) The bulk of the fragments that comprise this category belong to a single fabric group, mentioned briefly in one of the preceding paragraphs. It is accompanied by the so-called Paeonian Grey Ware and another two or three categories that make up less prominent fabric groups. We will focus on the most recognizable of these categories, the wheel-thrown Grey Ware, characteristic for a large number of Early Antique and Hellenistic sites in the Vardar Valley and in the wider region. (Photo 5)\(^7\)

This fabric category represents between 6 and 7% of the total surface record and it is far more widespread than the category discussed in the preceding paragraphs, covering much of the eastern half of the gridded area. There are two major concentrations on grids 2 and 4, with about 20 shards per 100 sq. meters each. They are accompanied by a similar concentration on grid 7, on the edge of the gridded area. A zone of average density defined by the thresholds of 3 and 10 fragments per 100 sq. meters spreads over most of grids 2, 4 and 6, the southern half of grid 3 and the eastern end of grid 7. Similar densities were recorded on a few grid units in the central part of grid 10. In the rest of the collections from the eastern half of the gridded area, the density of this material drops below 3 fragments per 100 sq. meters. There is a gradual decline on grids 1, 7 and 10, towards the southern, northern and eastern edge of the site. A sudden drop was documented on grid 5 to the west, especially in the southern half of this grid, in which only isolated

\(^7\) Grey-fired pottery inspired by Greek pottery shapes is a widespread phenomenon in the periphery of the Hellenic world, but its chronology still has not been clarified. (Stojanović-Anderson 1992: 13-17; Cončev and Mičev 1970: 149-203; Čeka 1985: 119-162.)
fragments were encountered. This tendency continues into the western half of the site, with only several fragments collected from grids 8 and 9.

In other words, the spread of the Paeonian Grey Ware coincides with the position of the total surface carpet, at least in its eastern half. (cf. Maps 8 and 7) With the exception of a few units on grid 7, large quantities of this fabric group were discovered regularly on spots with high overall artefact densities. The opposite is true for grid 5 and parts of grid 10 on which, despite the high overall densities, the number of finds that belong to this category is low.

It has to be emphasized that this is not a homogenous fabric group. It spans a period of three to four centuries and it includes a wide spectrum of functional types and, consequently, its pattern of distribution requires a careful interpretation. The fact that this material spreads over much of the eastern half of the site can be interpreted either as the maximum extent of the settlement reached at a certain point of time between the end of the Iron Age and the Late Hellenistic period or as the aggregate result of a number of subsequent phases during which the settlement shifted across this part of the survey area. The low chronological resolution does not allow us to reconstruct the changing topography of this town during its earliest phases.

The number of finds datable more narrowly to the Hellenistic period is tiny. It amounts to about 30 fragments, mostly body shards, with a poor black slip on the surface, characteristic for the later part of the Hellenistic period. (Bitrakova-Grozdanova 1987; Stojanovic-Anderson 1992) These finds only partly coincide with the rest of the material roughly dated between the end of the Iron Age and the Late Hellenistic period.

Like the small group of Iron Age finds, they form a compact cluster, limited to the western end of grid 4 and the northwest corner of grid 5. (Map 9) Only isolated fragments appear in the field blocks with high overall artefact density. This seems to imply a change in the focus of settlement during the Hellenistic period. The rub is that there is no way of determining what proportion of the Grey Paeonian ware dates to the Hellenistic period. This pottery appears in large quantities both on grids 2 and 4, and it is possible that the Hellenistic period merely saw a continuation of the settlement cores established in the preceding centuries. However, it has to be stressed, that no typically Hellenistic finds appear in the old settlement cores, on grid 2, southeast of the circuit wall, and on grid 7, in the northern part of the gridded area.

If we look at the distribution of the fabric groups that have been determined as possibly Hellenistic and that chiefly coincide with the carpet of Black Gloss pottery, the resulting spread is hardly more extensive.
and the Iron Age ceramic carpets. Differences between the positions of the Hellenistic ends of the survey area, further underlying the fine among the collections from the eastern and western ends of the survey area, further underlying the fine differences between the positions of the Hellenistic and the Iron Age ceramic carpets.

Obviously these categories represent only a very small part of the ceramic assemblage used during the Hellenistic period. It certainly included some of the fabric categories that were broadly assigned to the Hellenistic-Roman periods, as well as material possibly dating to the end of the Iron Age. However, the limited dispersal of the Black Gloss ware and its complete absence from the southern core of the site in its early phase, indicate that the focus of the settlement changed during the Hellenistic period. This should not be necessarily read as a sign of decline or contraction. It is preferably interpreted as an indicator of a process of social stratification, coupled by a reorganization of the settlement’s layout. Imported table ware was limited to a smaller section of the local community, the majority of the inhabitants continued to use locally produced, traditional pottery.

It seems that the distribution of one of the most recognizable categories of Roman pottery, the Red Slip ware, lends some support to this hypothesis. (Map 10) It too is represented by a very small corpus of finds, even if we include the locally produced finds with a red slip of a poor quality. The finds that have been assigned to this category barely amount to 1% of all Roman finds and 0.25% of the total surface record. They overlap perfectly with the Black Gloss ware, appearing almost exclusively in the southern half of grid 4 and the northern end of grid 5. Outside this central part of the total survey area, they are even scarcer than the Black Gloss ware.

That the settlement on Vidingrad was far more extensive during the Roman period is indicated by the distribution of the rest of the fabric groups dated to this period. A locally produced fabric (Photo 6) stretches over most of grid 4 and the northern half of grid 5, with a low density zone extending over grids 3, 6 and 10 and on grid 8, on the western edge of the gridred area. (Map 10) Other fabric categories assigned exclusively to the Roman or to the Late Roman period are far more numerous and extensive. One fabric group characterized by solid firing at stable temperatures and plain ochre surfaces is particularly prominent, amounting to almost 8% of the total surface record and 20% of all finds datable to the Roman or the Late Roman period. (Photo 7) Together with the building ceramics, broad-

(Near Vidingrad, the ceramic site expands over much of the area covered by grid 4 and continues into the northern end of grid 5. Outside this central part of the gridred area, the finds of this group form an extremely sparse fabric categories that were broadly assigned to the Hellenistic-Roman periods, as well as material possibly dating to the end of the Iron Age. However, the limited dispersal of the Black Gloss ware and its complete absence from the southern core of the site in its early phase, indicate that the focus of the settlement changed during the Hellenistic period. This should not be necessarily read as a sign of decline or contraction. It is preferably interpreted as an indicator of a process of social stratification, coupled by a reorganization of the settlement’s layout. Imported table ware was limited to a smaller section of the local community, the majority of the inhabitants continued to use locally produced, traditional pottery.

It seems that the distribution of one of the most recognizable categories of Roman pottery, the Red Slip ware, lends some support to this hypothesis. (Map 10) It too is represented by a very small corpus of finds, even if we include the locally produced finds with a red slip of a poor quality. The finds that have been assigned to this category barely amount to 1% of all Roman finds and 0.25% of the total surface record. They overlap perfectly with the Black Gloss ware, appearing almost exclusively in the southern half of grid 4 and the northern end of grid 5. Outside this central part of the total survey area, they are even scarcer than the Black Gloss ware.

That the settlement on Vidingrad was far more extensive during the Roman period is indicated by the distribution of the rest of the fabric groups dated to this period. A locally produced fabric (Photo 6) stretches over most of grid 4 and the northern half of grid 5, with a low density zone extending over grids 3, 6 and 10 and on grid 8, on the western edge of the gridred area. (Map 10) Other fabric categories assigned exclusively to the Roman or to the Late Roman period are far more numerous and extensive. One fabric group characterized by solid firing at stable temperatures and plain ochre surfaces is particularly prominent, amounting to almost 8% of the total surface record and 20% of all finds datable to the Roman or the Late Roman period. (Photo 7) Together with the building ceramics, broad-
ly dated between the Hellenistic and the Late Roman period, it determines the distribution of the overall surface record. The density of these finds is higher than 5 fragments per 100 sq. meters on most of the area covered by grids 2 through 5, partly continuing into the southern half of grid 6, the western half of grid 10 and the eastern half of grid 8. Indubitably, it also spreads over the intervening, overgrown stretches between grids 5 and 8.

If we focus on all finds datable to the Roman and Late Roman period, it is possible to observe two closely positioned cores. The one on grids 4 and 5 continues from the earlier period, but now it is more extensive, with maximum densities of almost 20 fragments per 100 sq. meters. The second core is less pronounced and smaller. It is limited to the southern half of grid 3 and the northern rows on grid 2, with artefact densities lower than 15 fragments per 100 sq. meters. On these two locations the grid survey recorded the highest overall artefact densities within the gridded area.

The central portions of the ceramic site are surrounded by a ring of low artefact density, captured by the total survey on the peripheral grids 7-10 and 1. If it is conceded that at least a portion of this zone belonged to the built-up area of the site – the western half of grid 10 and the eastern end of grid 8, but not grids 1 and 9 – we would have to conclude that the settlement had expanded over an area of between 5 and 7 ha by the time of the Middle Empire. Because it did not reach the southern and northern limits of the settlement dated between the Iron Age and the Hellenistic period, it falls short of the size of total ceramic carpet by 1-2 ha.

The extent of the built-up area is reflected most clearly in the spread of the building ceramics although, like the rest of the broadly dated ceramic categories, it veils the details of the local settlement history. Tiles were usually dated between the Hellenistic and Late Roman period, but most likely the majority of these belong to the Roman period, in which the usage of architectural ceramics had become common even in the remotest corners of the countryside. The scatter of tile fragments matches perfectly the dispersal of the predominant fabric group dated to the Roman-Late Roman period. Even the inner structure of the two spreads is nearly identical. Their cores overlap fully on grids 4 and 3. (Map 11) The fairly high density of tile fragments on the western half of grid 10 and parts of grid 7, approaching the tile densities recorded in the central portions of the ceramic site, is particularly notable. This circumstance lends additional support to the thesis that the built-up area of the Roman settlement extended over the peripheral grids 10, 7 and possibly the eastern end of grid 8. (Papazoglou 1988, 313-323)
One particularity of the ceramic record of Vidingrad is the relatively large number of amphora fragments. This is particularly evident if compared with the composition of the ceramic assemblages discovered at rural sites from the Hellenistic or the Roman period, at which amphorae are nearly absent. Over 200 amphorae fragments were collected from the surface of Vidingrad. They coincide perfectly with the carpet of finds dated to the Hellenistic and the Roman period, a fact that is probably indicative of their chronology. Nearly one third of all amphorae were collected from the core on grid 4 and a second concentration in the southern core, on grid 2. (Map 11) Smaller quantities were found dispersed across grids 3, 5, 7, 8 and especially on grid 10, on the eastern periphery of the Roman settlement.

Because the predominant fabric groups can only be roughly dated to the Roman and the Late Roman period, the evolution of the settlement during this period of six to seven centuries is difficult to reconstruct. In view of the known political history of the Middle Vardar Valley, it is tempting to assume that the settlement area expanded under the High Empire, although it should be stressed that the Hellenistic assemblage is known only partially. The fact that the Roman to Late Roman period represents the last phase of occupation at this site is also a potentially distorting factor, because the finds from the upper archaeological strata are more likely to prevail in the total surface record. It is also impossible to establish a more precise date for this assumed expansion, the late 1st century AD or much later, in the early 3rd century, the period to which the small epigraphic corpus of Argos has been dated.

If it is accepted that Vidingrad was ancient Argos on the Vardar, it can be surmised that the town had been abandoned sometime between the middle of the 6th and the beginning of the 7th century AD. This is indicated in Hierocle’s list of bishoprics dated to the first half of the 6th century, although it has to be admitted that the 6th century horizon – well-attested at other major sites, like Scupi or Gradište, Konuh – is poorly represented in the surface collections from Vidingrad. Is it possible that this settlement had moved to another location, while it kept its name? Our rudimentary understanding of the ceramic material can hardly be of any help in solving this problem. The only certainty is that there was no permanent settlement on this location after the end of antiquity. The latest period in the surface record is represented by the sparse ceramic debris discarded over the last couple of centuries by the inhabitants of Vodovrati. Once abandoned, Vidingrad was never reoccupied again and it had become a part of the hinterland of the settlements located to the south of the stream Glavjata.

A summary and conclusions

The ceramic survey on Vidingrad confirmed the overall chronology of this settlement, suggested by earlier researchers. This settlement was established only towards the end of the Iron Age as a regional or a tribal centre, in the contact zone between the Middle Vardar Valley and the mountainous hinterland to the west. A number of contemporary settlements of a similar size and rank are known from the wider region of the Vardar Valley, (Eudaristos-Gradište, Drenovo; Astraion-Pilav Tepe, Šopur?) some of which, like the settlement on Vidingrad, outlived the Iron Age and continued to exist as urban or quasi-urban settlements during the Hellenistic and Roman periods.

The total ceramic survey revealed only small segments of the earliest settlement on Vidingrad. In the interval between the end of the Iron Age and the Late Hellenistic period, the settlement spread over the eastern half of the fortified area and beyond the limits of the eastern and northern walls. In fact, it is possible that the problematic settlement on the left bank of the Vidindol had already been established by this time-period. On the other hand, the western half of the fortified area appears nearly sterile. However, this interpretation is only tentative, because the absence or presence of a certain period in the surface record is preconditioned not only by the presence of disturbed subsurface layers from the same period, but also by the presence and the thickness of later archaeological strata.

Although decisive evidence still has not been discovered, the built-up area of the early settlement can be roughly estimated at no less than 5 ha. If the sizeable quantities of surface pottery encountered on the left bank of the Vidin Dol are the remains of a residential area, it can be concluded that this settlement was of equal size and possibly even larger than the Hellenistic and Roman period settlement. Recall that on the northern and eastern sides, the carpet of finds dated securely between the end of the Iron Age and the Hellenistic period was more extensive than the ceramic site from the Hellenistic and Roman periods. This does not necessarily mean that the early settlement was demographically larger than its Classical successor. It is possible that the pre-Hellenistic settlement had a sparser layout than its successors. In view of the fact that the surface remains from the two major phases of the settlement largely overlap, it is very difficult to say anything specific about the layout of the pre-Roman settlement. A major concentration of

During the transect collections on these field units carried out in 2015, it was noticed that the majority of the finds pre-date the Roman period.
pottery was identified in the southern periphery of the fortified area, but this could merely result from the fact that this portion of the site was not covered by solid architecture during the later phases of occupation.

By the Hellenistic period, the settlement on Vidingrad was mostly concentrated on grid 4, closer to the geometric centre of the ceramic site. It is also possible to observe a slight increase in the number of finds on the grids that cover the western half of the fortified area. Almost no finds from the earlier period were collected from this part of the gridded area. Can these slight shifts in the distribution of the surface finds be taken as indicators of a change in the settlement layout? Vidingrad entered the historical record under the name of Argos, at roughly the same time period. If the renaming of this settlement was accompanied by an act of planned colonization, it is indeed appealing to propose a link between the observed changes in the surface record and this political event. However, it has often been shown that it is very difficult to find an unambiguous relation between the historical events and the archaeological record, even in cases in which a much finer chronology of the archaeological material is available. The distribution of the securely dated finds does seem to indicate certain changes in the layout of the settlement during the Hellenistic period, but they are too few to illuminate its true nature and scale. The link between this supposed change and the supposed act of foundation of the colony by the Antigonids sometime in the 3rd century BC is impossible to establish. At present, the real effect of this act on the settlement size and layout can only be guessed. We know next to nothing about the settlement on Vidingrad during the centuries prior to the Hellenistic period. Not a single fragment can be dated safely to the 5th or the 4th century BC. This could either be read as a sign that there were no major changes in pottery production in the early phases of occupation at this site or that there was a brief abandonment of the settlement prior to the Hellenistic period. We are more inclined towards accepting the former explanation. If we are to go by the better researched colonies of the Argeads, like Philippopolis or Cabyle, there were a few discernable changes between the Classical and Hellenistic periods at these sites. These colonies were tiny, consisting of a small group of soldier-settlers loyal to the Macedonian court (Velkov ed. 1982; Kolarova, Bospatčeva 2005: 69-85). Typically, it was accompanied by a change of the settlement’s name, often the most lasting effect of this colonization policy.

Nonetheless, the settlement on Vidingrad, re-founded as Argos, managed to survive the turbulent events that marked the Late Hellenistic period in the Vardar Valley and prospered again under the Roman Empire. Because it is located closer to the surface, the material from this period is well-represented in the grid collections and it is possible to follow the settlement’s topography more closely. In the Roman to Late Roman period the settlement focus in the central part of the gridded area continued, but we also see an expansion into the extra-mural zone, east of the fortification. The western half of the enclosure remained sparsely occupied, although the surface finds from this period appear in greater quantities than the finds dating to the early settlement phase. It is impossible to say if there really was an expansion after the Roman conquest of this area.

With a built-up area of only about 6-8ha, this was an average town by the standards of the Vardar Valley. Argos on the Vardar was unlike most of the newly-founded Roman towns. There simply was not enough room at this site to place all the public buildings normally associated with the provincial Roman towns. The absence of monumental buildings or architectural sculpture is particularly telling in this respect. This is hardly surprising if one recalls that Stobi, a town that had become a fully-fledged municipium by the end of the 1st century AD, was located only about 8 km to the south of Vidingrad. (Papazoglou 1988, 313-323) In view of its proximity to Stobi, it is remarkable that Argos managed to survive until the end of Antiquity. The town must have functioned as the main market and religious centre for the mountainous region around Mount Klepa, to the north of Stobi. In this context, the reader should recall the fairly large and heterogeneous corpus of amphorae fragments, rarely encountered at rural sites. This role as a micro-regional centre provided the economic input necessary for the preservation of the old communal identity and social status. Against all odds, Argos continued to exist in the Roman period and, by the 3rd century AD, the decrees of the local council were recorded in stone.

Throughout this paper the accent was on the remarkable level of continuity of the settlement on Vidingrad, but this could very well be an effect of our poor understanding of local pottery production. Chronologically more sensitive categories are rare in comparison to other urban sites; a fact that also serves to emphasize the relatively humble socio-economic standing of this community. Because of this circumstance, it is often impossible to go beyond the mere recognition of a certain phase in the surface record. We remain ignorant of the likely episodes of decline and retrenchment in the history of Argos. The ways in which the hypothetical founding of the colony transformed the Iron Age settlement, the size and character of the Hellenistic town, its relation to the settlement from the Roman period and a number of other important questions will be left unanswered.
until a clear sequence of pottery types is established. Nonetheless, in the case of Argos on the Vardar the aspect of continuity cannot be overrated. This is reflected in the relative stability of the settlement’s topography and the strongly conservative character of the local pottery. The tribal centre that emerged on Vidingrad by the end of the Iron Age lived-on through the Early Antique and Hellenistic periods and was even successfully integrated into the urban network of the Early Empire. The eventful history of the Vardar Valley during this long period of time seems to have left a few perceptible changes in the nature of this settlement.

The end came only after the middle of the 6th century AD. As explained in the preceding paragraphs, the town is mentioned in the historical sources pertaining to the 6th century, both by Stephen of Byzantium and in the Synecdemos of Hierocles, as a bishopric in Secunda. (Papazoglou 1988, 444-465) However, the archaeological evidence (or rather its absence) suggests the possibility that the Late Antique bishopric was not located at the same site as the Early Roman and pre-Roman town (the possibility that Argos was located at another site is less likely). Vidingrad is not a particularly defensive position and it is possible that the settlement never really recuperated from the shock of the great Gothic and Hunic invasions in the late 4th and the middle of the 5th century AD. It is possible that the bishopric mentioned in the Late Antique sources refers to a different site, surely located somewhere in the immediate surroundings of Vidingrad. A short distance to the west of Vidingrad, a hill-fort known as Belgrad has been dated to the Late Roman-Early Byzantine period. (Lilčić 1998: 13-54) However, these combinations are purely hypothetical and more research is required before we can be more specific about the demise of this town and bishopric.

The small quantity of post-antique finds on the surface of Vidingrad date to the Early Modern period. Their presence on the surface of this site indicates that after the abandonment of Argos, it had become a part of the agricultural territory of the village of Vodovrati. It is remarkable that Vidingrad had been occupied as long as there was an urban centre in this micro-region. The predecessor and successor settlements of ancient Argos were rural settlements and they occupied the open terrain to the south of Vidingrad. These sites were located more optimally in relation to the local agricultural resources than Vidingrad, but they were positioned away from the main local roads and could not have functioned as micro-regional central places.

Map 1
Mana 3

Mana 4

Mana 5
Mana 8

Mana 9
Mana 10

Mana 11